Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
2 |
|
tpf.t |
⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } |
3 |
|
tpid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
|
tpid2g |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
7 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
9 |
6 8
|
ifcld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
10 |
4 9
|
ifcld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
11 |
10 2
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ 𝑇 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 0 ..^ 3 ) ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ∈ 𝑇 ) |
13 |
12 1
|
fmptd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |