| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tpf1o.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ 3 )  ↦  if ( 𝑥  =  0 ,  𝐴 ,  if ( 𝑥  =  1 ,  𝐵 ,  𝐶 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							tpf.t | 
							⊢ 𝑇  =  { 𝐴 ,  𝐵 ,  𝐶 }  | 
						
						
							| 3 | 
							
								1 2
							 | 
							tpfo | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 )  | 
						
						
							| 5 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							hashfzo0 | 
							⊢ ( 3  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 3 ) )  =  3 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ax-mp | 
							⊢ ( ♯ ‘ ( 0 ..^ 3 ) )  =  3  | 
						
						
							| 8 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ♯ ‘ 𝑇 )  =  3  ↔  3  =  ( ♯ ‘ 𝑇 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpi | 
							⊢ ( ( ♯ ‘ 𝑇 )  =  3  →  3  =  ( ♯ ‘ 𝑇 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  3  =  ( ♯ ‘ 𝑇 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  ( ♯ ‘ ( 0 ..^ 3 ) )  =  ( ♯ ‘ 𝑇 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fzofi | 
							⊢ ( 0 ..^ 3 )  ∈  Fin  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 0 ..^ 3 )  ∈  Fin )  | 
						
						
							| 14 | 
							
								
							 | 
							tpfi | 
							⊢ { 𝐴 ,  𝐵 ,  𝐶 }  ∈  Fin  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqeltri | 
							⊢ 𝑇  ∈  Fin  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑇 )  =  3  →  𝑇  ∈  Fin )  | 
						
						
							| 17 | 
							
								
							 | 
							hashen | 
							⊢ ( ( ( 0 ..^ 3 )  ∈  Fin  ∧  𝑇  ∈  Fin )  →  ( ( ♯ ‘ ( 0 ..^ 3 ) )  =  ( ♯ ‘ 𝑇 )  ↔  ( 0 ..^ 3 )  ≈  𝑇 ) )  | 
						
						
							| 18 | 
							
								13 16 17
							 | 
							syl2an | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  ( ( ♯ ‘ ( 0 ..^ 3 ) )  =  ( ♯ ‘ 𝑇 )  ↔  ( 0 ..^ 3 )  ≈  𝑇 ) )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  ( 0 ..^ 3 )  ≈  𝑇 )  | 
						
						
							| 20 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  𝑇  ∈  Fin )  | 
						
						
							| 21 | 
							
								
							 | 
							fofinf1o | 
							⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇  ∧  ( 0 ..^ 3 )  ≈  𝑇  ∧  𝑇  ∈  Fin )  →  𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 )  | 
						
						
							| 22 | 
							
								4 19 20 21
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  3 )  →  𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 )  |