Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
2 |
|
tpf.t |
⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } |
3 |
1 2
|
tpfo |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |
5 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
6 |
|
hashfzo0 |
⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
7 |
5 6
|
ax-mp |
⊢ ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 |
8 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝑇 ) = 3 ↔ 3 = ( ♯ ‘ 𝑇 ) ) |
9 |
8
|
biimpi |
⊢ ( ( ♯ ‘ 𝑇 ) = 3 → 3 = ( ♯ ‘ 𝑇 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 3 = ( ♯ ‘ 𝑇 ) ) |
11 |
7 10
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ) |
12 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 0 ..^ 3 ) ∈ Fin ) |
14 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin |
15 |
2 14
|
eqeltri |
⊢ 𝑇 ∈ Fin |
16 |
15
|
a1i |
⊢ ( ( ♯ ‘ 𝑇 ) = 3 → 𝑇 ∈ Fin ) |
17 |
|
hashen |
⊢ ( ( ( 0 ..^ 3 ) ∈ Fin ∧ 𝑇 ∈ Fin ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) ) |
18 |
13 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) ) |
19 |
11 18
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( 0 ..^ 3 ) ≈ 𝑇 ) |
20 |
15
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝑇 ∈ Fin ) |
21 |
|
fofinf1o |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ∧ ( 0 ..^ 3 ) ≈ 𝑇 ∧ 𝑇 ∈ Fin ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |
22 |
4 19 20 21
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |