Metamath Proof Explorer


Theorem tpf1o

Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025)

Ref Expression
Hypotheses tpf1o.f 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) )
tpf.t 𝑇 = { 𝐴 , 𝐵 , 𝐶 }
Assertion tpf1o ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto𝑇 )

Proof

Step Hyp Ref Expression
1 tpf1o.f 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) )
2 tpf.t 𝑇 = { 𝐴 , 𝐵 , 𝐶 }
3 1 2 tpfo ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto𝑇 )
4 3 adantr ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –onto𝑇 )
5 3nn0 3 ∈ ℕ0
6 hashfzo0 ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 )
7 5 6 ax-mp ( ♯ ‘ ( 0 ..^ 3 ) ) = 3
8 eqcom ( ( ♯ ‘ 𝑇 ) = 3 ↔ 3 = ( ♯ ‘ 𝑇 ) )
9 8 biimpi ( ( ♯ ‘ 𝑇 ) = 3 → 3 = ( ♯ ‘ 𝑇 ) )
10 9 adantl ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 3 = ( ♯ ‘ 𝑇 ) )
11 7 10 eqtrid ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) )
12 fzofi ( 0 ..^ 3 ) ∈ Fin
13 12 a1i ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( 0 ..^ 3 ) ∈ Fin )
14 tpfi { 𝐴 , 𝐵 , 𝐶 } ∈ Fin
15 2 14 eqeltri 𝑇 ∈ Fin
16 15 a1i ( ( ♯ ‘ 𝑇 ) = 3 → 𝑇 ∈ Fin )
17 hashen ( ( ( 0 ..^ 3 ) ∈ Fin ∧ 𝑇 ∈ Fin ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) )
18 13 16 17 syl2an ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( ( ♯ ‘ ( 0 ..^ 3 ) ) = ( ♯ ‘ 𝑇 ) ↔ ( 0 ..^ 3 ) ≈ 𝑇 ) )
19 11 18 mpbid ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → ( 0 ..^ 3 ) ≈ 𝑇 )
20 15 a1i ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝑇 ∈ Fin )
21 fofinf1o ( ( 𝐹 : ( 0 ..^ 3 ) –onto𝑇 ∧ ( 0 ..^ 3 ) ≈ 𝑇𝑇 ∈ Fin ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto𝑇 )
22 4 19 20 21 syl3anc ( ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( ♯ ‘ 𝑇 ) = 3 ) → 𝐹 : ( 0 ..^ 3 ) –1-1-onto𝑇 )