Metamath Proof Explorer


Theorem tpf1ofv0

Description: The value of a one-to-one function onto a triple at 0. (Contributed by AV, 20-Jul-2025)

Ref Expression
Hypothesis tpf1o.f 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) )
Assertion tpf1ofv0 ( 𝐴𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 tpf1o.f 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) )
2 1 a1i ( 𝐴𝑉𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) )
3 iftrue ( 𝑥 = 0 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 )
4 3 adantl ( ( 𝐴𝑉𝑥 = 0 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 )
5 3nn 3 ∈ ℕ
6 lbfzo0 ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ )
7 5 6 mpbir 0 ∈ ( 0 ..^ 3 )
8 7 a1i ( 𝐴𝑉 → 0 ∈ ( 0 ..^ 3 ) )
9 id ( 𝐴𝑉𝐴𝑉 )
10 2 4 8 9 fvmptd ( 𝐴𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 )