Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) ) |
3 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = 0 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
5 |
|
3nn |
⊢ 3 ∈ ℕ |
6 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
7 |
5 6
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 0 ∈ ( 0 ..^ 3 ) ) |
9 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
10 |
2 4 8 9
|
fvmptd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 ) |