Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) ) |
3 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
4 |
3
|
neii |
⊢ ¬ 1 = 0 |
5 |
|
eqeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 = 0 ↔ 1 = 0 ) ) |
6 |
4 5
|
mtbiri |
⊢ ( 𝑥 = 1 → ¬ 𝑥 = 0 ) |
7 |
6
|
iffalsed |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) |
8 |
|
iftrue |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐵 , 𝐶 ) = 𝐵 ) |
9 |
7 8
|
eqtrd |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 = 1 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
11 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
12 |
|
3nn |
⊢ 3 ∈ ℕ |
13 |
|
1lt3 |
⊢ 1 < 3 |
14 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) |
15 |
11 12 13 14
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 3 ) |
16 |
15
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → 1 ∈ ( 0 ..^ 3 ) ) |
17 |
|
id |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉 ) |
18 |
2 10 16 17
|
fvmptd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 ‘ 1 ) = 𝐵 ) |