Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝐶 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) ) |
3 |
|
2ne0 |
⊢ 2 ≠ 0 |
4 |
3
|
neii |
⊢ ¬ 2 = 0 |
5 |
|
eqeq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 = 0 ↔ 2 = 0 ) ) |
6 |
4 5
|
mtbiri |
⊢ ( 𝑥 = 2 → ¬ 𝑥 = 0 ) |
7 |
6
|
iffalsed |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
|
1lt2 |
⊢ 1 < 2 |
10 |
8 9
|
gtneii |
⊢ 2 ≠ 1 |
11 |
10
|
neii |
⊢ ¬ 2 = 1 |
12 |
|
eqeq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 = 1 ↔ 2 = 1 ) ) |
13 |
11 12
|
mtbiri |
⊢ ( 𝑥 = 2 → ¬ 𝑥 = 1 ) |
14 |
13
|
iffalsed |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐵 , 𝐶 ) = 𝐶 ) |
15 |
7 14
|
eqtrd |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐶 ) |
16 |
15
|
adantl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑥 = 2 ) → if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) = 𝐶 ) |
17 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
18 |
|
3nn |
⊢ 3 ∈ ℕ |
19 |
|
2lt3 |
⊢ 2 < 3 |
20 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) |
21 |
17 18 19 20
|
mpbir3an |
⊢ 2 ∈ ( 0 ..^ 3 ) |
22 |
21
|
a1i |
⊢ ( 𝐶 ∈ 𝑉 → 2 ∈ ( 0 ..^ 3 ) ) |
23 |
|
id |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉 ) |
24 |
2 16 22 23
|
fvmptd |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐹 ‘ 2 ) = 𝐶 ) |