Metamath Proof Explorer


Theorem tpfi

Description: An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013)

Ref Expression
Assertion tpfi { 𝐴 , 𝐵 , 𝐶 } ∈ Fin

Proof

Step Hyp Ref Expression
1 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
2 prfi { 𝐴 , 𝐵 } ∈ Fin
3 snfi { 𝐶 } ∈ Fin
4 unfi ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ { 𝐶 } ∈ Fin ) → ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∈ Fin )
5 2 3 4 mp2an ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∈ Fin
6 1 5 eqeltri { 𝐴 , 𝐵 , 𝐶 } ∈ Fin