| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpf1o.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ 3 ) ↦ if ( 𝑥 = 0 , 𝐴 , if ( 𝑥 = 1 , 𝐵 , 𝐶 ) ) ) |
| 2 |
|
tpf.t |
⊢ 𝑇 = { 𝐴 , 𝐵 , 𝐶 } |
| 3 |
1 2
|
tpf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| 4 |
|
eltpi |
⊢ ( 𝑡 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑡 = 𝐴 ∨ 𝑡 = 𝐵 ∨ 𝑡 = 𝐶 ) ) |
| 5 |
|
3nn |
⊢ 3 ∈ ℕ |
| 6 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
| 7 |
5 6
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 0 ∈ ( 0 ..^ 3 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 0 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑖 = 0 → ( 𝐴 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 0 ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑖 = 0 ) → ( 𝐴 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 0 ) ) ) |
| 12 |
1
|
tpf1ofv0 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 0 ) = 𝐴 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ( 𝐹 ‘ 0 ) ) |
| 14 |
8 11 13
|
rspcedvd |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐴 = ( 𝐹 ‘ 𝑖 ) ) |
| 15 |
|
eqeq1 |
⊢ ( 𝑡 = 𝐴 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑡 = 𝐴 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐴 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 17 |
14 16
|
syl5ibrcom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑡 = 𝐴 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 18 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 19 |
|
1lt3 |
⊢ 1 < 3 |
| 20 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) |
| 21 |
18 5 19 20
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 22 |
21
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → 1 ∈ ( 0 ..^ 3 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 1 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑖 = 1 → ( 𝐵 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 1 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑖 = 1 ) → ( 𝐵 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 1 ) ) ) |
| 26 |
1
|
tpf1ofv1 |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 ‘ 1 ) = 𝐵 ) |
| 27 |
26
|
eqcomd |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( 𝐹 ‘ 1 ) ) |
| 28 |
22 25 27
|
rspcedvd |
⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐵 = ( 𝐹 ‘ 𝑖 ) ) |
| 29 |
|
eqeq1 |
⊢ ( 𝑡 = 𝐵 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐵 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑡 = 𝐵 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐵 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 31 |
28 30
|
syl5ibrcom |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑡 = 𝐵 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 32 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 33 |
|
2lt3 |
⊢ 2 < 3 |
| 34 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) |
| 35 |
32 5 33 34
|
mpbir3an |
⊢ 2 ∈ ( 0 ..^ 3 ) |
| 36 |
35
|
a1i |
⊢ ( 𝐶 ∈ 𝑉 → 2 ∈ ( 0 ..^ 3 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 2 ) ) |
| 38 |
37
|
eqeq2d |
⊢ ( 𝑖 = 2 → ( 𝐶 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 2 ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑖 = 2 ) → ( 𝐶 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 2 ) ) ) |
| 40 |
1
|
tpf1ofv2 |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐹 ‘ 2 ) = 𝐶 ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐹 ‘ 2 ) ) |
| 42 |
36 39 41
|
rspcedvd |
⊢ ( 𝐶 ∈ 𝑉 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐶 = ( 𝐹 ‘ 𝑖 ) ) |
| 43 |
|
eqeq1 |
⊢ ( 𝑡 = 𝐶 → ( 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ 𝐶 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 44 |
43
|
rexbidv |
⊢ ( 𝑡 = 𝐶 → ( ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝐶 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 45 |
42 44
|
syl5ibrcom |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝑡 = 𝐶 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 46 |
17 31 45
|
3jaao |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑡 = 𝐴 ∨ 𝑡 = 𝐵 ∨ 𝑡 = 𝐶 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 47 |
4 46
|
syl5com |
⊢ ( 𝑡 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 48 |
47 2
|
eleq2s |
⊢ ( 𝑡 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 49 |
48
|
com12 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑡 ∈ 𝑇 → ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 50 |
49
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∀ 𝑡 ∈ 𝑇 ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) |
| 51 |
|
dffo3 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ↔ ( 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ∃ 𝑖 ∈ ( 0 ..^ 3 ) 𝑡 = ( 𝐹 ‘ 𝑖 ) ) ) |
| 52 |
3 50 51
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |