Metamath Proof Explorer


Theorem tpid1g

Description: Closed theorem form of tpid1 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion tpid1g ( 𝐴𝐵𝐴 ∈ { 𝐴 , 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 1 3mix1i ( 𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷 )
3 eltpg ( 𝐴𝐵 → ( 𝐴 ∈ { 𝐴 , 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷 ) ) )
4 2 3 mpbiri ( 𝐴𝐵𝐴 ∈ { 𝐴 , 𝐶 , 𝐷 } )