Metamath Proof Explorer


Theorem tpid2g

Description: Closed theorem form of tpid2 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion tpid2g ( 𝐴𝐵𝐴 ∈ { 𝐶 , 𝐴 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 1 3mix2i ( 𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷 )
3 eltpg ( 𝐴𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐴 , 𝐷 } ↔ ( 𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷 ) ) )
4 2 3 mpbiri ( 𝐴𝐵𝐴 ∈ { 𝐶 , 𝐴 , 𝐷 } )