Description: Closed theorem form of tpid3 . (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by JJ, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | tpid3g | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix3i | ⊢ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴 ) |
3 | eltpg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴 ) ) ) | |
4 | 2 3 | mpbiri | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝐶 , 𝐷 , 𝐴 } ) |