Metamath Proof Explorer


Theorem tpidm12

Description: Unordered triple { A , A , B } is just an overlong way to write { A , B } . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion tpidm12 { 𝐴 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 }

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 1 uneq1i ( { 𝐴 } ∪ { 𝐵 } ) = ( { 𝐴 , 𝐴 } ∪ { 𝐵 } )
3 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
4 df-tp { 𝐴 , 𝐴 , 𝐵 } = ( { 𝐴 , 𝐴 } ∪ { 𝐵 } )
5 2 3 4 3eqtr4ri { 𝐴 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 }