Metamath Proof Explorer


Theorem tpnei

Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss . (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis tpnei.1 𝑋 = 𝐽
Assertion tpnei ( 𝐽 ∈ Top → ( 𝑆𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 tpnei.1 𝑋 = 𝐽
2 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
3 opnneiss ( ( 𝐽 ∈ Top ∧ 𝑋𝐽𝑆𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )
4 3 3exp ( 𝐽 ∈ Top → ( 𝑋𝐽 → ( 𝑆𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) )
5 2 4 mpd ( 𝐽 ∈ Top → ( 𝑆𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )
6 ssnei ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆𝑋 )
7 6 ex ( 𝐽 ∈ Top → ( 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆𝑋 ) )
8 5 7 impbid ( 𝐽 ∈ Top → ( 𝑆𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )