Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss . (Contributed by FL, 2-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | tpnei | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
3 | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
4 | 3 | 3exp | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ∈ 𝐽 → ( 𝑆 ⊆ 𝑋 → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
5 | 2 4 | mpd | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
6 | ssnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) | |
7 | 6 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 ⊆ 𝑋 ) ) |
8 | 5 7 | impbid | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |