Metamath Proof Explorer


Theorem tpnz

Description: An unordered triple containing a set is not empty. (Contributed by NM, 10-Apr-1994)

Ref Expression
Hypothesis tpnz.1 𝐴 ∈ V
Assertion tpnz { 𝐴 , 𝐵 , 𝐶 } ≠ ∅

Proof

Step Hyp Ref Expression
1 tpnz.1 𝐴 ∈ V
2 1 tpid1 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 }
3 2 ne0ii { 𝐴 , 𝐵 , 𝐶 } ≠ ∅