Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tposco | ⊢ tpos ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ tpos 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) | |
2 | dftpos4 | ⊢ tpos ( 𝐹 ∘ 𝐺 ) = ( ( 𝐹 ∘ 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
3 | dftpos4 | ⊢ tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
4 | 3 | coeq2i | ⊢ ( 𝐹 ∘ tpos 𝐺 ) = ( 𝐹 ∘ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
5 | 1 2 4 | 3eqtr4i | ⊢ tpos ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ tpos 𝐺 ) |