Metamath Proof Explorer


Theorem tposconst

Description: The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018)

Ref Expression
Assertion tposconst tpos ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) = ( ( 𝐵 × 𝐴 ) × { 𝐶 } )

Proof

Step Hyp Ref Expression
1 fconstmpo ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 tposmpo tpos ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) = ( 𝑦𝐵 , 𝑥𝐴𝐶 )
3 fconstmpo ( ( 𝐵 × 𝐴 ) × { 𝐶 } ) = ( 𝑦𝐵 , 𝑥𝐴𝐶 )
4 2 3 eqtr4i tpos ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) = ( ( 𝐵 × 𝐴 ) × { 𝐶 } )