Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tposeq | ⊢ ( 𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss | ⊢ ( 𝐹 = 𝐺 → 𝐹 ⊆ 𝐺 ) | |
2 | tposss | ⊢ ( 𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺 ) | |
3 | 1 2 | syl | ⊢ ( 𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺 ) |
4 | eqimss2 | ⊢ ( 𝐹 = 𝐺 → 𝐺 ⊆ 𝐹 ) | |
5 | tposss | ⊢ ( 𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹 ) | |
6 | 4 5 | syl | ⊢ ( 𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹 ) |
7 | 3 6 | eqssd | ⊢ ( 𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺 ) |