| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 2 |  | relcnv | ⊢ Rel  ◡ 𝐴 | 
						
							| 3 |  | cnvf1o | ⊢ ( Rel  ◡ 𝐴  →  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1-onto→ ◡ ◡ 𝐴 ) | 
						
							| 4 |  | f1of1 | ⊢ ( ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1-onto→ ◡ ◡ 𝐴  →  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 ) | 
						
							| 5 | 2 3 4 | mp2b | ⊢ ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 | 
						
							| 6 |  | simpl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  Rel  𝐴 ) | 
						
							| 7 |  | dfrel2 | ⊢ ( Rel  𝐴  ↔  ◡ ◡ 𝐴  =  𝐴 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ◡ ◡ 𝐴  =  𝐴 ) | 
						
							| 9 |  | f1eq3 | ⊢ ( ◡ ◡ 𝐴  =  𝐴  →  ( ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴  ↔  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴  ↔  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | 
						
							| 11 | 5 10 | mpbii | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) | 
						
							| 12 |  | f1dm | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 13 | 1 12 | syl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  dom  𝐹  =  𝐴 ) | 
						
							| 14 | 13 | cnveqd | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ◡ dom  𝐹  =  ◡ 𝐴 ) | 
						
							| 15 |  | mpteq1 | ⊢ ( ◡ dom  𝐹  =  ◡ 𝐴  →  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } )  =  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) ) | 
						
							| 16 |  | f1eq1 | ⊢ ( ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } )  =  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } )  →  ( ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴  ↔  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | 
						
							| 17 | 14 15 16 | 3syl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴  ↔  ( 𝑥  ∈  ◡ 𝐴  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | 
						
							| 18 | 11 17 | mpbird | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) | 
						
							| 19 |  | f1co | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 )  →  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) | 
						
							| 20 | 1 18 19 | syl2anc | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) | 
						
							| 21 | 12 | releqd | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  ( Rel  dom  𝐹  ↔  Rel  𝐴 ) ) | 
						
							| 22 | 21 | biimparc | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  Rel  dom  𝐹 ) | 
						
							| 23 |  | dftpos2 | ⊢ ( Rel  dom  𝐹  →  tpos  𝐹  =  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) ) | 
						
							| 24 |  | f1eq1 | ⊢ ( tpos  𝐹  =  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) )  →  ( tpos  𝐹 : ◡ 𝐴 –1-1→ 𝐵  ↔  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 25 | 22 23 24 | 3syl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( tpos  𝐹 : ◡ 𝐴 –1-1→ 𝐵  ↔  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 26 | 20 25 | mpbird | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  tpos  𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) | 
						
							| 27 | 26 | ex | ⊢ ( Rel  𝐴  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  →  tpos  𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) ) |