| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tposfo2 | ⊢ ( Rel  𝐴  →  ( 𝐹 : 𝐴 –onto→ ran  𝐹  →  tpos  𝐹 : ◡ 𝐴 –onto→ ran  𝐹 ) ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | dffn4 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 5 | 1 4 | impel | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  tpos  𝐹 : ◡ 𝐴 –onto→ ran  𝐹 ) | 
						
							| 6 |  | fof | ⊢ ( tpos  𝐹 : ◡ 𝐴 –onto→ ran  𝐹  →  tpos  𝐹 : ◡ 𝐴 ⟶ ran  𝐹 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  tpos  𝐹 : ◡ 𝐴 ⟶ ran  𝐹 ) | 
						
							| 8 |  | frn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 10 | 7 9 | fssd | ⊢ ( ( Rel  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  tpos  𝐹 : ◡ 𝐴 ⟶ 𝐵 ) | 
						
							| 11 | 10 | ex | ⊢ ( Rel  𝐴  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  tpos  𝐹 : ◡ 𝐴 ⟶ 𝐵 ) ) |