| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tposfun | ⊢ ( Fun  𝐹  →  Fun  tpos  𝐹 ) | 
						
							| 2 | 1 | a1i | ⊢ ( Rel  𝐴  →  ( Fun  𝐹  →  Fun  tpos  𝐹 ) ) | 
						
							| 3 |  | dmtpos | ⊢ ( Rel  dom  𝐹  →  dom  tpos  𝐹  =  ◡ dom  𝐹 ) | 
						
							| 4 | 3 | a1i | ⊢ ( dom  𝐹  =  𝐴  →  ( Rel  dom  𝐹  →  dom  tpos  𝐹  =  ◡ dom  𝐹 ) ) | 
						
							| 5 |  | releq | ⊢ ( dom  𝐹  =  𝐴  →  ( Rel  dom  𝐹  ↔  Rel  𝐴 ) ) | 
						
							| 6 |  | cnveq | ⊢ ( dom  𝐹  =  𝐴  →  ◡ dom  𝐹  =  ◡ 𝐴 ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( dom  𝐹  =  𝐴  →  ( dom  tpos  𝐹  =  ◡ dom  𝐹  ↔  dom  tpos  𝐹  =  ◡ 𝐴 ) ) | 
						
							| 8 | 4 5 7 | 3imtr3d | ⊢ ( dom  𝐹  =  𝐴  →  ( Rel  𝐴  →  dom  tpos  𝐹  =  ◡ 𝐴 ) ) | 
						
							| 9 | 8 | com12 | ⊢ ( Rel  𝐴  →  ( dom  𝐹  =  𝐴  →  dom  tpos  𝐹  =  ◡ 𝐴 ) ) | 
						
							| 10 | 2 9 | anim12d | ⊢ ( Rel  𝐴  →  ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐴 )  →  ( Fun  tpos  𝐹  ∧  dom  tpos  𝐹  =  ◡ 𝐴 ) ) ) | 
						
							| 11 |  | df-fn | ⊢ ( 𝐹  Fn  𝐴  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  𝐴 ) ) | 
						
							| 12 |  | df-fn | ⊢ ( tpos  𝐹  Fn  ◡ 𝐴  ↔  ( Fun  tpos  𝐹  ∧  dom  tpos  𝐹  =  ◡ 𝐴 ) ) | 
						
							| 13 | 10 11 12 | 3imtr4g | ⊢ ( Rel  𝐴  →  ( 𝐹  Fn  𝐴  →  tpos  𝐹  Fn  ◡ 𝐴 ) ) |