Metamath Proof Explorer


Theorem tposmpo

Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis tposmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion tposmpo tpos 𝐹 = ( 𝑦𝐵 , 𝑥𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 tposmpo.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
3 ancom ( ( 𝑥𝐴𝑦𝐵 ) ↔ ( 𝑦𝐵𝑥𝐴 ) )
4 3 anbi1i ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑦𝐵𝑥𝐴 ) ∧ 𝑧 = 𝐶 ) )
5 4 oprabbii { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑦𝐵𝑥𝐴 ) ∧ 𝑧 = 𝐶 ) }
6 1 2 5 3eqtri 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑦𝐵𝑥𝐴 ) ∧ 𝑧 = 𝐶 ) }
7 6 tposoprab tpos 𝐹 = { ⟨ ⟨ 𝑦 , 𝑥 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑦𝐵𝑥𝐴 ) ∧ 𝑧 = 𝐶 ) }
8 df-mpo ( 𝑦𝐵 , 𝑥𝐴𝐶 ) = { ⟨ ⟨ 𝑦 , 𝑥 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑦𝐵𝑥𝐴 ) ∧ 𝑧 = 𝐶 ) }
9 7 8 eqtr4i tpos 𝐹 = ( 𝑦𝐵 , 𝑥𝐴𝐶 )