Step |
Hyp |
Ref |
Expression |
1 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
2 |
|
cossxp |
⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) |
3 |
1 2
|
eqsstri |
⊢ tpos 𝐹 ⊆ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
5 |
4
|
dmmptss |
⊢ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) |
6 |
|
xpss1 |
⊢ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |
8 |
3 7
|
sstri |
⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |