Metamath Proof Explorer


Theorem tposssxp

Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Assertion tposssxp tpos 𝐹 ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 )

Proof

Step Hyp Ref Expression
1 df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
2 cossxp ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ⊆ ( dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) × ran 𝐹 )
3 1 2 eqsstri tpos 𝐹 ⊆ ( dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) × ran 𝐹 )
4 eqid ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) = ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } )
5 4 dmmptss dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ⊆ ( dom 𝐹 ∪ { ∅ } )
6 xpss1 ( dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ⊆ ( dom 𝐹 ∪ { ∅ } ) → ( dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) )
7 5 6 ax-mp ( dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 )
8 3 7 sstri tpos 𝐹 ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 )