| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpostpos | ⊢ tpos  tpos  𝐹  =  ( 𝐹  ∩  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) ) | 
						
							| 2 |  | relrelss | ⊢ ( ( Rel  𝐹  ∧  Rel  dom  𝐹 )  ↔  𝐹  ⊆  ( ( V  ×  V )  ×  V ) ) | 
						
							| 3 |  | ssun1 | ⊢ ( V  ×  V )  ⊆  ( ( V  ×  V )  ∪  { ∅ } ) | 
						
							| 4 |  | xpss1 | ⊢ ( ( V  ×  V )  ⊆  ( ( V  ×  V )  ∪  { ∅ } )  →  ( ( V  ×  V )  ×  V )  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ( V  ×  V )  ×  V )  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) | 
						
							| 6 |  | sstr | ⊢ ( ( 𝐹  ⊆  ( ( V  ×  V )  ×  V )  ∧  ( ( V  ×  V )  ×  V )  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) )  →  𝐹  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) ) | 
						
							| 7 | 5 6 | mpan2 | ⊢ ( 𝐹  ⊆  ( ( V  ×  V )  ×  V )  →  𝐹  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) ) | 
						
							| 8 | 2 7 | sylbi | ⊢ ( ( Rel  𝐹  ∧  Rel  dom  𝐹 )  →  𝐹  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) ) | 
						
							| 9 |  | dfss2 | ⊢ ( 𝐹  ⊆  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V )  ↔  ( 𝐹  ∩  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) )  =  𝐹 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( Rel  𝐹  ∧  Rel  dom  𝐹 )  →  ( 𝐹  ∩  ( ( ( V  ×  V )  ∪  { ∅ } )  ×  V ) )  =  𝐹 ) | 
						
							| 11 | 1 10 | eqtrid | ⊢ ( ( Rel  𝐹  ∧  Rel  dom  𝐹 )  →  tpos  tpos  𝐹  =  𝐹 ) |