Metamath Proof Explorer


Theorem tprot

Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }

Proof

Step Hyp Ref Expression
1 3orrot ( ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) ↔ ( 𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴 ) )
2 1 abbii { 𝑥 ∣ ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) } = { 𝑥 ∣ ( 𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴 ) }
3 dftp2 { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) }
4 dftp2 { 𝐵 , 𝐶 , 𝐴 } = { 𝑥 ∣ ( 𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴 ) }
5 2 3 4 3eqtr4i { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }