| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpspropd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 2 |
|
tpspropd.2 |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
| 3 |
1
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝐾 ) ) = ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) |
| 4 |
2 3
|
eleq12d |
⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ↔ ( TopOpen ‘ 𝐿 ) ∈ ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 7 |
5 6
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 9 |
|
eqid |
⊢ ( TopOpen ‘ 𝐿 ) = ( TopOpen ‘ 𝐿 ) |
| 10 |
8 9
|
istps |
⊢ ( 𝐿 ∈ TopSp ↔ ( TopOpen ‘ 𝐿 ) ∈ ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) |
| 11 |
4 7 10
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |