| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpss.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | tpss.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | tpss.3 | ⊢ 𝐶  ∈  V | 
						
							| 4 |  | unss | ⊢ ( ( { 𝐴 ,  𝐵 }  ⊆  𝐷  ∧  { 𝐶 }  ⊆  𝐷 )  ↔  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } )  ⊆  𝐷 ) | 
						
							| 5 |  | df-3an | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷  ∧  𝐶  ∈  𝐷 )  ↔  ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  𝐷 ) ) | 
						
							| 6 | 1 2 | prss | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷 )  ↔  { 𝐴 ,  𝐵 }  ⊆  𝐷 ) | 
						
							| 7 | 3 | snss | ⊢ ( 𝐶  ∈  𝐷  ↔  { 𝐶 }  ⊆  𝐷 ) | 
						
							| 8 | 6 7 | anbi12i | ⊢ ( ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷 )  ∧  𝐶  ∈  𝐷 )  ↔  ( { 𝐴 ,  𝐵 }  ⊆  𝐷  ∧  { 𝐶 }  ⊆  𝐷 ) ) | 
						
							| 9 | 5 8 | bitri | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷  ∧  𝐶  ∈  𝐷 )  ↔  ( { 𝐴 ,  𝐵 }  ⊆  𝐷  ∧  { 𝐶 }  ⊆  𝐷 ) ) | 
						
							| 10 |  | df-tp | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 11 | 10 | sseq1i | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ⊆  𝐷  ↔  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } )  ⊆  𝐷 ) | 
						
							| 12 | 4 9 11 | 3bitr4i | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝐷  ∧  𝐶  ∈  𝐷 )  ↔  { 𝐴 ,  𝐵 ,  𝐶 }  ⊆  𝐷 ) |