Step |
Hyp |
Ref |
Expression |
1 |
|
tpss.1 |
⊢ 𝐴 ∈ V |
2 |
|
tpss.2 |
⊢ 𝐵 ∈ V |
3 |
|
tpss.3 |
⊢ 𝐶 ∈ V |
4 |
|
unss |
⊢ ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) |
5 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ) |
6 |
1 2
|
prss |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐷 ) |
7 |
3
|
snss |
⊢ ( 𝐶 ∈ 𝐷 ↔ { 𝐶 } ⊆ 𝐷 ) |
8 |
6 7
|
anbi12i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) |
9 |
5 8
|
bitri |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) |
10 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
11 |
10
|
sseq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) |
12 |
4 9 11
|
3bitr4i |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |