Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpstop.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| Assertion | tpstop | ⊢ ( 𝐾 ∈ TopSp → 𝐽 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpstop.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 3 | 2 1 | istps2 | ⊢ ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ ( Base ‘ 𝐾 ) = ∪ 𝐽 ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝐾 ∈ TopSp → 𝐽 ∈ Top ) |