Metamath Proof Explorer


Theorem tpstop

Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014)

Ref Expression
Hypothesis tpstop.j 𝐽 = ( TopOpen ‘ 𝐾 )
Assertion tpstop ( 𝐾 ∈ TopSp → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 tpstop.j 𝐽 = ( TopOpen ‘ 𝐾 )
2 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
3 2 1 istps2 ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ ( Base ‘ 𝐾 ) = 𝐽 ) )
4 3 simplbi ( 𝐾 ∈ TopSp → 𝐽 ∈ Top )