Step |
Hyp |
Ref |
Expression |
1 |
|
hbra1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
2 |
|
alrim3con13v |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ) ) |
3 |
1 2
|
e0a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ) |
4 |
|
ax-5 |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝑥 ∈ 𝐴 ) |
5 |
|
hbra1 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
6 |
4 5
|
hbral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
7 |
|
alrim3con13v |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ) ) |
8 |
6 7
|
e0a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ) |
9 |
|
idn2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝑦 ) |
11 |
9 10
|
e2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ 𝑥 ∈ 𝑦 ) |
12 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
13 |
9 12
|
e2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ 𝑦 ∈ 𝐵 ) |
14 |
|
idn3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) , 𝐵 ∈ 𝑥 ▶ 𝐵 ∈ 𝑥 ) |
15 |
|
pm3.2an3 |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) ) |
16 |
11 13 14 15
|
e223 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) , 𝐵 ∈ 𝑥 ▶ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) |
17 |
16
|
in3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) |
18 |
|
en3lp |
⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) |
19 |
|
con3 |
⊢ ( ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) → ¬ 𝐵 ∈ 𝑥 ) ) |
20 |
17 18 19
|
e20 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ¬ 𝐵 ∈ 𝑥 ) |
21 |
|
idn3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) , 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 ) |
22 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵 ) ) |
23 |
22
|
biimprcd |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐵 → 𝑦 ∈ 𝑥 ) ) |
24 |
13 21 23
|
e23 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) , 𝑥 = 𝐵 ▶ 𝑦 ∈ 𝑥 ) |
25 |
|
pm3.2 |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
26 |
11 24 25
|
e23 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) , 𝑥 = 𝐵 ▶ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) |
27 |
26
|
in3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
28 |
|
en2lp |
⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) |
29 |
|
con3 |
⊢ ( ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑥 = 𝐵 ) ) |
30 |
27 28 29
|
e20 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ¬ 𝑥 = 𝐵 ) |
31 |
|
idn1 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ) |
32 |
|
simp3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
33 |
31 32
|
e1a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ 𝐵 ∈ 𝐴 ) |
34 |
|
simp2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
35 |
31 34
|
e1a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
36 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
37 |
36
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
38 |
35 37
|
e1a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
39 |
|
simp1 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐴 ) |
40 |
31 39
|
e1a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ Tr 𝐴 ) |
41 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
42 |
41
|
expd |
⊢ ( Tr 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
43 |
40 13 33 42
|
e121 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ 𝑦 ∈ 𝐴 ) |
44 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
45 |
44
|
expd |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
46 |
40 11 43 45
|
e122 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ 𝑥 ∈ 𝐴 ) |
47 |
|
rspsbc2 |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) ) |
48 |
47
|
com13 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ 𝐴 → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) ) |
49 |
38 46 33 48
|
e121 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
50 |
|
equid |
⊢ 𝑥 = 𝑥 |
51 |
|
sbceq2a |
⊢ ( 𝑥 = 𝑥 → ( [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
52 |
50 51
|
ax-mp |
⊢ ( [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
53 |
52
|
biimpi |
⊢ ( [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
54 |
49 53
|
e2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
55 |
|
sbcoreleleq |
⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
56 |
55
|
biimpd |
⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
57 |
33 54 56
|
e12 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) |
58 |
|
3ornot23 |
⊢ ( ( ¬ 𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
59 |
58
|
ex |
⊢ ( ¬ 𝐵 ∈ 𝑥 → ( ¬ 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) ) |
60 |
20 30 57 59
|
e222 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) , ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ▶ 𝑥 ∈ 𝐵 ) |
61 |
60
|
in2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
62 |
8 61
|
gen11nv |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
63 |
3 62
|
gen11nv |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
64 |
|
dftr2 |
⊢ ( Tr 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
65 |
64
|
biimpri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) → Tr 𝐵 ) |
66 |
63 65
|
e1a |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) ▶ Tr 𝐵 ) |
67 |
66
|
in1 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |