Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
|
simp2l |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |
3 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
5 |
1 2 4
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
8 |
|
simp2r |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) |
9 |
|
trfbas2 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
10 |
9
|
biimpar |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
11 |
6 7 8 10
|
syl21anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
12 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |
13 |
1
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
14 |
13
|
elfvexd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑋 ∈ V ) |
15 |
7
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝐴 ⊆ 𝑋 ) |
16 |
14 15
|
ssexd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝐴 ∈ V ) |
17 |
16
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝐴 ∈ V ) |
18 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝑎 ∈ 𝐹 ) |
19 |
|
elrestr |
⊢ ( ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝐴 ∈ V ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
20 |
12 17 18 19
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
21 |
|
inxp |
⊢ ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
23 |
22
|
ssrind |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
24 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
25 |
23 24
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 × 𝑎 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑤 ) |
26 |
21 25
|
eqsstrrid |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) |
27 |
|
id |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
28 |
27
|
sqxpeqd |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( 𝑏 × 𝑏 ) = ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ) |
29 |
28
|
sseq1d |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( ( 𝑏 × 𝑏 ) ⊆ 𝑤 ↔ ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) ) |
30 |
29
|
rspcev |
⊢ ( ( ( 𝑎 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ∧ ( ( 𝑎 ∩ 𝐴 ) × ( 𝑎 ∩ 𝐴 ) ) ⊆ 𝑤 ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
31 |
20 26 30
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐹 ) ∧ ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
32 |
5
|
simprd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
33 |
32
|
r19.21bi |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
34 |
33
|
ad4ant13 |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
35 |
31 34
|
r19.29a |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
36 |
16 16
|
xpexd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ( 𝐴 × 𝐴 ) ∈ V ) |
37 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
38 |
|
elrest |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
40 |
13 36 37 39
|
syl21anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑤 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
41 |
35 40
|
r19.29a |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) |
43 |
|
trust |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
44 |
1 7 43
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
45 |
|
iscfilu |
⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑤 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑏 ∈ ( 𝐹 ↾t 𝐴 ) ( 𝑏 × 𝑏 ) ⊆ 𝑤 ) ) ) |
47 |
11 42 46
|
mpbir2and |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |