Metamath Proof Explorer


Theorem trel

Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion trel ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr 𝐴 ↔ ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
2 eleq12 ( ( 𝑦 = 𝐵𝑥 = 𝐶 ) → ( 𝑦𝑥𝐵𝐶 ) )
3 eleq1 ( 𝑥 = 𝐶 → ( 𝑥𝐴𝐶𝐴 ) )
4 3 adantl ( ( 𝑦 = 𝐵𝑥 = 𝐶 ) → ( 𝑥𝐴𝐶𝐴 ) )
5 2 4 anbi12d ( ( 𝑦 = 𝐵𝑥 = 𝐶 ) → ( ( 𝑦𝑥𝑥𝐴 ) ↔ ( 𝐵𝐶𝐶𝐴 ) ) )
6 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝐴𝐵𝐴 ) )
7 6 adantr ( ( 𝑦 = 𝐵𝑥 = 𝐶 ) → ( 𝑦𝐴𝐵𝐴 ) )
8 5 7 imbi12d ( ( 𝑦 = 𝐵𝑥 = 𝐶 ) → ( ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) ) )
9 8 spc2gv ( ( 𝐵𝐶𝐶𝐴 ) → ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) ) )
10 9 pm2.43b ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) )
11 1 10 sylbi ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) )