Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
2 |
|
eleq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶 ) ) |
3 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
5 |
2 4
|
anbi12d |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
8 |
5 7
|
imbi12d |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
9 |
8
|
spc2gv |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
10 |
9
|
pm2.43b |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
11 |
1 10
|
sylbi |
⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |