Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | trel3 | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) ) ) | |
2 | trel | ⊢ ( Tr 𝐴 → ( ( 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) ) | |
3 | 2 | anim2d | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ ( 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
4 | 1 3 | syl5bi | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
5 | trel | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) | |
6 | 4 5 | syld | ⊢ ( Tr 𝐴 → ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |