Metamath Proof Explorer


Theorem trel3

Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion trel3 ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐷𝐷𝐴 ) → 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 3anass ( ( 𝐵𝐶𝐶𝐷𝐷𝐴 ) ↔ ( 𝐵𝐶 ∧ ( 𝐶𝐷𝐷𝐴 ) ) )
2 trel ( Tr 𝐴 → ( ( 𝐶𝐷𝐷𝐴 ) → 𝐶𝐴 ) )
3 2 anim2d ( Tr 𝐴 → ( ( 𝐵𝐶 ∧ ( 𝐶𝐷𝐷𝐴 ) ) → ( 𝐵𝐶𝐶𝐴 ) ) )
4 1 3 syl5bi ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐷𝐷𝐴 ) → ( 𝐵𝐶𝐶𝐴 ) ) )
5 trel ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) )
6 4 5 syld ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐷𝐷𝐴 ) → 𝐵𝐴 ) )