Metamath Proof Explorer


Theorem trelded

Description: Deduction form of trel . In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses trelded.1 ( 𝜑 → Tr 𝐴 )
trelded.2 ( 𝜓𝐵𝐶 )
trelded.3 ( 𝜒𝐶𝐴 )
Assertion trelded ( ( 𝜑𝜓𝜒 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 trelded.1 ( 𝜑 → Tr 𝐴 )
2 trelded.2 ( 𝜓𝐵𝐶 )
3 trelded.3 ( 𝜒𝐶𝐴 )
4 trel ( Tr 𝐴 → ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 ) )
5 4 3impib ( ( Tr 𝐴𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 )
6 1 2 3 5 syl3an ( ( 𝜑𝜓𝜒 ) → 𝐵𝐴 )