Metamath Proof Explorer


Theorem treq

Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion treq ( 𝐴 = 𝐵 → ( Tr 𝐴 ↔ Tr 𝐵 ) )

Proof

Step Hyp Ref Expression
1 unieq ( 𝐴 = 𝐵 𝐴 = 𝐵 )
2 1 sseq1d ( 𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴 ) )
3 sseq2 ( 𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵 ) )
4 2 3 bitrd ( 𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵 ) )
5 df-tr ( Tr 𝐴 𝐴𝐴 )
6 df-tr ( Tr 𝐵 𝐵𝐵 )
7 4 5 6 3bitr4g ( 𝐴 = 𝐵 → ( Tr 𝐴 ↔ Tr 𝐵 ) )