Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | treq | ⊢ ( 𝐴 = 𝐵 → ( Tr 𝐴 ↔ Tr 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq | ⊢ ( 𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵 ) | |
2 | 1 | sseq1d | ⊢ ( 𝐴 = 𝐵 → ( ∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴 ) ) |
3 | sseq2 | ⊢ ( 𝐴 = 𝐵 → ( ∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵 ) ) | |
4 | 2 3 | bitrd | ⊢ ( 𝐴 = 𝐵 → ( ∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵 ) ) |
5 | df-tr | ⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) | |
6 | df-tr | ⊢ ( Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵 ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( Tr 𝐴 ↔ Tr 𝐵 ) ) |