Step |
Hyp |
Ref |
Expression |
1 |
|
trfbas2 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
2 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
3 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas ) → 𝐴 ∈ V ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
5 |
2 4
|
sylan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
6 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) |
7 |
5 6
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) |
8 |
7
|
notbid |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) |
9 |
|
nesym |
⊢ ( ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ∀ 𝑣 ∈ 𝐹 ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ) |
11 |
|
ralnex |
⊢ ( ∀ 𝑣 ∈ 𝐹 ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) |
12 |
10 11
|
bitri |
⊢ ( ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) |
13 |
8 12
|
bitr4di |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
14 |
1 13
|
bitrd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |