Metamath Proof Explorer


Theorem trfbas

Description: Conditions for the trace of a filter base F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion trfbas ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∀ 𝑣𝐹 ( 𝑣𝐴 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 trfbas2 ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹t 𝐴 ) ) )
2 elfvdm ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas )
3 ssexg ( ( 𝐴𝑌𝑌 ∈ dom fBas ) → 𝐴 ∈ V )
4 3 ancoms ( ( 𝑌 ∈ dom fBas ∧ 𝐴𝑌 ) → 𝐴 ∈ V )
5 2 4 sylan ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 ∈ V )
6 elrest ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( ∅ ∈ ( 𝐹t 𝐴 ) ↔ ∃ 𝑣𝐹 ∅ = ( 𝑣𝐴 ) ) )
7 5 6 syldan ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ∅ ∈ ( 𝐹t 𝐴 ) ↔ ∃ 𝑣𝐹 ∅ = ( 𝑣𝐴 ) ) )
8 7 notbid ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ¬ ∅ ∈ ( 𝐹t 𝐴 ) ↔ ¬ ∃ 𝑣𝐹 ∅ = ( 𝑣𝐴 ) ) )
9 nesym ( ( 𝑣𝐴 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑣𝐴 ) )
10 9 ralbii ( ∀ 𝑣𝐹 ( 𝑣𝐴 ) ≠ ∅ ↔ ∀ 𝑣𝐹 ¬ ∅ = ( 𝑣𝐴 ) )
11 ralnex ( ∀ 𝑣𝐹 ¬ ∅ = ( 𝑣𝐴 ) ↔ ¬ ∃ 𝑣𝐹 ∅ = ( 𝑣𝐴 ) )
12 10 11 bitri ( ∀ 𝑣𝐹 ( 𝑣𝐴 ) ≠ ∅ ↔ ¬ ∃ 𝑣𝐹 ∅ = ( 𝑣𝐴 ) )
13 8 12 bitr4di ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ¬ ∅ ∈ ( 𝐹t 𝐴 ) ↔ ∀ 𝑣𝐹 ( 𝑣𝐴 ) ≠ ∅ ) )
14 1 13 bitrd ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( ( 𝐹t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∀ 𝑣𝐹 ( 𝑣𝐴 ) ≠ ∅ ) )