| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
| 2 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas ) → 𝐴 ∈ V ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 4 |
1 3
|
sylan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 5 |
|
restsspw |
⊢ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
| 6 |
5
|
a1i |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) |
| 7 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ≠ ∅ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐹 ≠ ∅ ) |
| 9 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 11 |
|
elrestr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
| 12 |
11
|
3expia |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
| 13 |
4 12
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
| 14 |
|
ne0i |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) |
| 15 |
13 14
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ 𝐹 → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) ) |
| 16 |
15
|
exlimdv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) ) |
| 17 |
10 16
|
mpd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) |
| 18 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 19 |
18
|
3expb |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 20 |
19
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 21 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
| 22 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝐴 ∈ V ) |
| 23 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝑥 ∈ 𝐹 ) |
| 24 |
21 22 23 11
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
| 25 |
|
ssrin |
⊢ ( 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) → ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 26 |
25
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 27 |
|
vex |
⊢ 𝑥 ∈ V |
| 28 |
27
|
inex1 |
⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 29 |
28
|
elpw |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ↔ ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 30 |
26 29
|
sylibr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 31 |
|
inelcm |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ∧ ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
| 32 |
24 30 31
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
| 33 |
20 32
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
| 34 |
33
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
| 35 |
|
vex |
⊢ 𝑧 ∈ V |
| 36 |
35
|
inex1 |
⊢ ( 𝑧 ∩ 𝐴 ) ∈ V |
| 37 |
36
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ∩ 𝐴 ) ∈ V ) |
| 38 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐹 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ) |
| 39 |
4 38
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐹 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ) |
| 40 |
|
vex |
⊢ 𝑤 ∈ V |
| 41 |
40
|
inex1 |
⊢ ( 𝑤 ∩ 𝐴 ) ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ∧ 𝑤 ∈ 𝐹 ) → ( 𝑤 ∩ 𝐴 ) ∈ V ) |
| 43 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
| 44 |
4 43
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
| 46 |
|
ineq12 |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝑧 ∩ 𝐴 ) ∩ ( 𝑤 ∩ 𝐴 ) ) ) |
| 47 |
|
inindir |
⊢ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) = ( ( 𝑧 ∩ 𝐴 ) ∩ ( 𝑤 ∩ 𝐴 ) ) |
| 48 |
46 47
|
eqtr4di |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 49 |
48
|
pweqd |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → 𝒫 ( 𝑥 ∩ 𝑦 ) = 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
| 50 |
49
|
ineq2d |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ) |
| 51 |
50
|
neeq1d |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
| 52 |
51
|
adantll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
| 53 |
42 45 52
|
ralxfr2d |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
| 54 |
37 39 53
|
ralxfr2d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
| 55 |
34 54
|
mpbird |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
| 56 |
|
isfbas |
⊢ ( 𝐴 ∈ V → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ∧ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 57 |
56
|
baibd |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
| 58 |
|
3anan32 |
⊢ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ↔ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
| 59 |
57 58
|
bitrdi |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) ) |
| 60 |
59
|
baibd |
⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) ∧ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
| 61 |
4 6 17 55 60
|
syl22anc |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
| 62 |
|
df-nel |
⊢ ( ∅ ∉ ( 𝐹 ↾t 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) |
| 63 |
61 62
|
bitrdi |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) |