Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
2 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas ) → 𝐴 ∈ V ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
5 |
|
restsspw |
⊢ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
6 |
5
|
a1i |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) |
7 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ≠ ∅ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐹 ≠ ∅ ) |
9 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
11 |
|
elrestr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
12 |
11
|
3expia |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
13 |
4 12
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) ) |
14 |
|
ne0i |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) |
15 |
13 14
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ 𝐹 → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) ) |
16 |
15
|
exlimdv |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) ) |
17 |
10 16
|
mpd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝐹 ↾t 𝐴 ) ≠ ∅ ) |
18 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
19 |
18
|
3expb |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
21 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
22 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝐴 ∈ V ) |
23 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → 𝑥 ∈ 𝐹 ) |
24 |
21 22 23 11
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ) |
25 |
|
ssrin |
⊢ ( 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) → ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
26 |
25
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
27 |
|
vex |
⊢ 𝑥 ∈ V |
28 |
27
|
inex1 |
⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
29 |
28
|
elpw |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ↔ ( 𝑥 ∩ 𝐴 ) ⊆ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
30 |
26 29
|
sylibr |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
31 |
|
inelcm |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐹 ↾t 𝐴 ) ∧ ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
32 |
24 30 31
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
33 |
20 32
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
34 |
33
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) |
35 |
|
vex |
⊢ 𝑧 ∈ V |
36 |
35
|
inex1 |
⊢ ( 𝑧 ∩ 𝐴 ) ∈ V |
37 |
36
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ∩ 𝐴 ) ∈ V ) |
38 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐹 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ) |
39 |
4 38
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐹 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ) |
40 |
|
vex |
⊢ 𝑤 ∈ V |
41 |
40
|
inex1 |
⊢ ( 𝑤 ∩ 𝐴 ) ∈ V |
42 |
41
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ∧ 𝑤 ∈ 𝐹 ) → ( 𝑤 ∩ 𝐴 ) ∈ V ) |
43 |
|
elrest |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
44 |
4 43
|
syldan |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ 𝐹 𝑦 = ( 𝑤 ∩ 𝐴 ) ) ) |
46 |
|
ineq12 |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝑧 ∩ 𝐴 ) ∩ ( 𝑤 ∩ 𝐴 ) ) ) |
47 |
|
inindir |
⊢ ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) = ( ( 𝑧 ∩ 𝐴 ) ∩ ( 𝑤 ∩ 𝐴 ) ) |
48 |
46 47
|
eqtr4di |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
49 |
48
|
pweqd |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → 𝒫 ( 𝑥 ∩ 𝑦 ) = 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) |
50 |
49
|
ineq2d |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ) |
51 |
50
|
neeq1d |
⊢ ( ( 𝑥 = ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
52 |
51
|
adantll |
⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) ∧ 𝑦 = ( 𝑤 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
53 |
42 45 52
|
ralxfr2d |
⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) ∧ 𝑥 = ( 𝑧 ∩ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
54 |
37 39 53
|
ralxfr2d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐹 ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( ( 𝑧 ∩ 𝑤 ) ∩ 𝐴 ) ) ≠ ∅ ) ) |
55 |
34 54
|
mpbird |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
56 |
|
isfbas |
⊢ ( 𝐴 ∈ V → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ∧ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
57 |
56
|
baibd |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
58 |
|
3anan32 |
⊢ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ↔ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
59 |
57 58
|
bitrdi |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ( ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ∧ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) ) |
60 |
59
|
baibd |
⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) ∧ ( ( 𝐹 ↾t 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 ↾t 𝐴 ) ∀ 𝑦 ∈ ( 𝐹 ↾t 𝐴 ) ( ( 𝐹 ↾t 𝐴 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
61 |
4 6 17 55 60
|
syl22anc |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∅ ∉ ( 𝐹 ↾t 𝐴 ) ) ) |
62 |
|
df-nel |
⊢ ( ∅ ∉ ( 𝐹 ↾t 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) |
63 |
61 62
|
bitrdi |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) |