| Step |
Hyp |
Ref |
Expression |
| 1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝐴 ) → 𝐹 ∈ ( fBas ‘ 𝐴 ) ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝐴 ) ) |
| 3 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝐴 ) → 𝐹 ⊆ 𝒫 𝐴 ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 𝐴 ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐴 ⊆ 𝑋 ) |
| 6 |
5
|
sspwd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝒫 𝐴 ⊆ 𝒫 𝑋 ) |
| 7 |
4 6
|
sstrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 9 |
|
fbasweak |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 10 |
2 7 8 9
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 11 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 13 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝐴 ) → 𝐴 ∈ 𝐹 ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐴 ∈ 𝐹 ) |
| 15 |
|
restval |
⊢ ( ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) = ran ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) = ran ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 17 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ) ) ) |
| 18 |
10 17
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ) ) ) |
| 19 |
18
|
simplbda |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ) |
| 20 |
|
simpll1 |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐹 ∈ ( Fil ‘ 𝐴 ) ) |
| 21 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐹 ) |
| 22 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 |
| 23 |
22
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 24 |
|
simprr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) |
| 25 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝐴 ) |
| 26 |
25
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝐴 ) |
| 27 |
26
|
ad2ant2r |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝐴 ) |
| 28 |
24 27
|
ssind |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ ( 𝑥 ∩ 𝐴 ) ) |
| 29 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ ( 𝑦 ∈ 𝐹 ∧ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ∧ 𝑦 ⊆ ( 𝑥 ∩ 𝐴 ) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
| 30 |
20 21 23 28 29
|
syl13anc |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
| 31 |
19 30
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
| 32 |
31
|
fmpttd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↦ ( 𝑥 ∩ 𝐴 ) ) : ( 𝑋 filGen 𝐹 ) ⟶ 𝐹 ) |
| 33 |
32
|
frnd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ran ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝐹 ) |
| 34 |
16 33
|
eqsstrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) ⊆ 𝐹 ) |
| 35 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝐴 ) |
| 36 |
35
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝐴 ) |
| 37 |
|
dfss2 |
⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝑥 ∩ 𝐴 ) = 𝑥 ) |
| 38 |
36 37
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) = 𝑥 ) |
| 39 |
12
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 40 |
14
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → 𝐴 ∈ 𝐹 ) |
| 41 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 42 |
10 41
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 43 |
42
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 44 |
|
elrestr |
⊢ ( ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → ( 𝑥 ∩ 𝐴 ) ∈ ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) ) |
| 45 |
39 40 43 44
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) ) |
| 46 |
38 45
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) ) |
| 47 |
34 46
|
eqelssd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 filGen 𝐹 ) ↾t 𝐴 ) = 𝐹 ) |