| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ 𝑌 ) |
| 2 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝑌 ↔ ( 𝑌 ∩ 𝐴 ) = 𝐴 ) |
| 3 |
1 2
|
sylib |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) = 𝐴 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 5 |
|
id |
⊢ ( 𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌 ) |
| 6 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
| 7 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿 ) → 𝐴 ∈ V ) |
| 8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
| 10 |
|
elrestr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) |
| 11 |
4 8 9 10
|
syl3anc |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) |
| 12 |
3 11
|
eqeltrrd |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) ) |
| 13 |
|
elssuni |
⊢ ( 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) |
| 15 |
|
restsspw |
⊢ ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
| 16 |
|
sspwuni |
⊢ ( ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) |
| 17 |
15 16
|
mpbi |
⊢ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 |
| 18 |
17
|
a1i |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) |
| 19 |
14 18
|
eqssd |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 = ∪ ( 𝐿 ↾t 𝐴 ) ) |