Metamath Proof Explorer


Theorem trfil1

Description: Conditions for the trace of a filter L to be a filter. (Contributed by FL, 2-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion trfil1 ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 = ( 𝐿t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴𝑌 )
2 sseqin2 ( 𝐴𝑌 ↔ ( 𝑌𝐴 ) = 𝐴 )
3 1 2 sylib ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( 𝑌𝐴 ) = 𝐴 )
4 simpl ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) )
5 id ( 𝐴𝑌𝐴𝑌 )
6 filtop ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌𝐿 )
7 ssexg ( ( 𝐴𝑌𝑌𝐿 ) → 𝐴 ∈ V )
8 5 6 7 syl2anr ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 ∈ V )
9 6 adantr ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝑌𝐿 )
10 elrestr ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑌𝐿 ) → ( 𝑌𝐴 ) ∈ ( 𝐿t 𝐴 ) )
11 4 8 9 10 syl3anc ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( 𝑌𝐴 ) ∈ ( 𝐿t 𝐴 ) )
12 3 11 eqeltrrd ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 ∈ ( 𝐿t 𝐴 ) )
13 elssuni ( 𝐴 ∈ ( 𝐿t 𝐴 ) → 𝐴 ( 𝐿t 𝐴 ) )
14 12 13 syl ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 ( 𝐿t 𝐴 ) )
15 restsspw ( 𝐿t 𝐴 ) ⊆ 𝒫 𝐴
16 sspwuni ( ( 𝐿t 𝐴 ) ⊆ 𝒫 𝐴 ( 𝐿t 𝐴 ) ⊆ 𝐴 )
17 15 16 mpbi ( 𝐿t 𝐴 ) ⊆ 𝐴
18 17 a1i ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → ( 𝐿t 𝐴 ) ⊆ 𝐴 )
19 14 18 eqssd ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴 = ( 𝐿t 𝐴 ) )