Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ 𝑌 ) |
2 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝑌 ↔ ( 𝑌 ∩ 𝐴 ) = 𝐴 ) |
3 |
1 2
|
sylib |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) = 𝐴 ) |
4 |
|
simpl |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
5 |
|
id |
⊢ ( 𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌 ) |
6 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
7 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿 ) → 𝐴 ∈ V ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
9 |
6
|
adantr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝑌 ∈ 𝐿 ) |
10 |
|
elrestr |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) |
11 |
4 8 9 10
|
syl3anc |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( 𝑌 ∩ 𝐴 ) ∈ ( 𝐿 ↾t 𝐴 ) ) |
12 |
3 11
|
eqeltrrd |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) ) |
13 |
|
elssuni |
⊢ ( 𝐴 ∈ ( 𝐿 ↾t 𝐴 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ⊆ ∪ ( 𝐿 ↾t 𝐴 ) ) |
15 |
|
restsspw |
⊢ ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
16 |
|
sspwuni |
⊢ ( ( 𝐿 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) |
17 |
15 16
|
mpbi |
⊢ ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 |
18 |
17
|
a1i |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ∪ ( 𝐿 ↾t 𝐴 ) ⊆ 𝐴 ) |
19 |
14 18
|
eqssd |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 = ∪ ( 𝐿 ↾t 𝐴 ) ) |