Metamath Proof Explorer


Theorem trfilss

Description: If A is a member of the filter, then the filter truncated to A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion trfilss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ⊆ 𝐹 )

Proof

Step Hyp Ref Expression
1 restval ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) = ran ( 𝑥𝐹 ↦ ( 𝑥𝐴 ) ) )
2 filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐹𝐴𝐹 ) → ( 𝑥𝐴 ) ∈ 𝐹 )
3 2 3expa ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐹 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐴 ) ∈ 𝐹 )
4 3 an32s ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) ∧ 𝑥𝐹 ) → ( 𝑥𝐴 ) ∈ 𝐹 )
5 4 fmpttd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝑥𝐹 ↦ ( 𝑥𝐴 ) ) : 𝐹𝐹 )
6 5 frnd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ran ( 𝑥𝐹 ↦ ( 𝑥𝐴 ) ) ⊆ 𝐹 )
7 1 6 eqsstrd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐹t 𝐴 ) ⊆ 𝐹 )