Step |
Hyp |
Ref |
Expression |
1 |
|
restval |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
2 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
4 |
3
|
an32s |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝐹 ) |
5 |
4
|
fmpttd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) : 𝐹 ⟶ 𝐹 ) |
6 |
5
|
frnd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ran ( 𝑥 ∈ 𝐹 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝐹 ) |
7 |
1 6
|
eqsstrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐹 ↾t 𝐴 ) ⊆ 𝐹 ) |