| Step | Hyp | Ref | Expression | 
						
							| 1 |  | restval | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝐹  ↾t  𝐴 )  =  ran  ( 𝑥  ∈  𝐹  ↦  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 2 |  | filin | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐹  ∧  𝐴  ∈  𝐹 )  →  ( 𝑥  ∩  𝐴 )  ∈  𝐹 ) | 
						
							| 3 | 2 | 3expa | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐹 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝑥  ∩  𝐴 )  ∈  𝐹 ) | 
						
							| 4 | 3 | an32s | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ( 𝑥  ∩  𝐴 )  ∈  𝐹 ) | 
						
							| 5 | 4 | fmpttd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝑥  ∈  𝐹  ↦  ( 𝑥  ∩  𝐴 ) ) : 𝐹 ⟶ 𝐹 ) | 
						
							| 6 | 5 | frnd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ran  ( 𝑥  ∈  𝐹  ↦  ( 𝑥  ∩  𝐴 ) )  ⊆  𝐹 ) | 
						
							| 7 | 1 6 | eqsstrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝐹  ↾t  𝐴 )  ⊆  𝐹 ) |