Metamath Proof Explorer


Theorem trggrp

Description: A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion trggrp ( 𝑅 ∈ TopRing → 𝑅 ∈ Grp )

Proof

Step Hyp Ref Expression
1 trgring ( 𝑅 ∈ TopRing → 𝑅 ∈ Ring )
2 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
3 1 2 syl ( 𝑅 ∈ TopRing → 𝑅 ∈ Grp )