Metamath Proof Explorer
Description: The multiplicative monoid of a topological ring is a topological monoid.
(Contributed by Mario Carneiro, 5-Oct-2015)
|
|
Ref |
Expression |
|
Hypothesis |
istrg.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
|
Assertion |
trgtmd |
⊢ ( 𝑅 ∈ TopRing → 𝑀 ∈ TopMnd ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istrg.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
1
|
istrg |
⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd ) ) |
| 3 |
2
|
simp3bi |
⊢ ( 𝑅 ∈ TopRing → 𝑀 ∈ TopMnd ) |