Metamath Proof Explorer


Theorem trgtmd2

Description: A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion trgtmd2 ( 𝑅 ∈ TopRing → 𝑅 ∈ TopMnd )

Proof

Step Hyp Ref Expression
1 trgtgp ( 𝑅 ∈ TopRing → 𝑅 ∈ TopGrp )
2 tgptmd ( 𝑅 ∈ TopGrp → 𝑅 ∈ TopMnd )
3 1 2 syl ( 𝑅 ∈ TopRing → 𝑅 ∈ TopMnd )