Metamath Proof Explorer


Theorem triin

Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022)

Ref Expression
Assertion triin ( ∀ 𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
2 1 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
3 r19.26 ( ∀ 𝑥𝐴 ( Tr 𝐵𝑦𝐵 ) ↔ ( ∀ 𝑥𝐴 Tr 𝐵 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) )
4 trss ( Tr 𝐵 → ( 𝑦𝐵𝑦𝐵 ) )
5 4 imp ( ( Tr 𝐵𝑦𝐵 ) → 𝑦𝐵 )
6 5 ralimi ( ∀ 𝑥𝐴 ( Tr 𝐵𝑦𝐵 ) → ∀ 𝑥𝐴 𝑦𝐵 )
7 3 6 sylbir ( ( ∀ 𝑥𝐴 Tr 𝐵 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) → ∀ 𝑥𝐴 𝑦𝐵 )
8 ssiin ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
9 7 8 sylibr ( ( ∀ 𝑥𝐴 Tr 𝐵 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) → 𝑦 𝑥𝐴 𝐵 )
10 2 9 sylan2b ( ( ∀ 𝑥𝐴 Tr 𝐵𝑦 𝑥𝐴 𝐵 ) → 𝑦 𝑥𝐴 𝐵 )
11 10 ralrimiva ( ∀ 𝑥𝐴 Tr 𝐵 → ∀ 𝑦 𝑥𝐴 𝐵 𝑦 𝑥𝐴 𝐵 )
12 dftr3 ( Tr 𝑥𝐴 𝐵 ↔ ∀ 𝑦 𝑥𝐴 𝐵 𝑦 𝑥𝐴 𝐵 )
13 11 12 sylibr ( ∀ 𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵 )