Step |
Hyp |
Ref |
Expression |
1 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
2 |
1
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
3 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
4 |
|
trss |
⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵 ) ) |
5 |
4
|
imp |
⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) |
7 |
3 6
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) |
8 |
|
ssiin |
⊢ ( 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) |
9 |
7 8
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
10 |
2 9
|
sylan2b |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
11 |
10
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → ∀ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
12 |
|
dftr3 |
⊢ ( Tr ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
13 |
11 12
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵 ) |