Metamath Proof Explorer


Theorem trin

Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994)

Ref Expression
Assertion trin ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 trss ( Tr 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
3 trss ( Tr 𝐵 → ( 𝑥𝐵𝑥𝐵 ) )
4 2 3 im2anan9 ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( ( 𝑥𝐴𝑥𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) ) )
5 1 4 syl5bi ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) ) )
6 ssin ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ⊆ ( 𝐴𝐵 ) )
7 5 6 syl6ib ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥 ⊆ ( 𝐴𝐵 ) ) )
8 7 ralrimiv ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝑥 ⊆ ( 𝐴𝐵 ) )
9 dftr3 ( Tr ( 𝐴𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝑥 ⊆ ( 𝐴𝐵 ) )
10 8 9 sylibr ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴𝐵 ) )