Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
2 |
|
trss |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
3 |
|
trss |
⊢ ( Tr 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
4 |
2 3
|
im2anan9 |
⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
5 |
1 4
|
syl5bi |
⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
6 |
|
ssin |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
7 |
5 6
|
syl6ib |
⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
8 |
7
|
ralrimiv |
⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
9 |
|
dftr3 |
⊢ ( Tr ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) |