Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
2 |
1
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
3 |
|
iidn3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐴 ) ) ) |
4 |
|
id |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
5 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
6 |
3 4 5
|
ee31 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) ) |
7 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
8 |
7
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
9 |
3 6 8
|
ee33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → Tr 𝑞 ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) |
11 |
10
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) ) |
12 |
|
elintg |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
13 |
12
|
ibi |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
14 |
11 13
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
15 |
|
rsp |
⊢ ( ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) |
16 |
14 15
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) ) |
17 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
18 |
17
|
expd |
⊢ ( Tr 𝑞 → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
19 |
9 2 16 18
|
ee323 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) ) |
20 |
19
|
ralrimdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
21 |
|
elintg |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
22 |
21
|
biimprd |
⊢ ( 𝑧 ∈ 𝑦 → ( ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴 ) ) |
23 |
2 20 22
|
syl6c |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
24 |
23
|
alrimivv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
25 |
|
dftr2 |
⊢ ( Tr ∩ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |