Metamath Proof Explorer


Theorem trintss

Description: Any nonempty transitive class includes its intersection. Exercise 3 in TakeutiZaring p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011) (Proof shortened by Andrew Salmon, 14-Nov-2011)

Ref Expression
Assertion trintss ( ( Tr 𝐴𝐴 ≠ ∅ ) → 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 intss1 ( 𝑥𝐴 𝐴𝑥 )
3 trss ( Tr 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
4 3 com12 ( 𝑥𝐴 → ( Tr 𝐴𝑥𝐴 ) )
5 sstr2 ( 𝐴𝑥 → ( 𝑥𝐴 𝐴𝐴 ) )
6 2 4 5 sylsyld ( 𝑥𝐴 → ( Tr 𝐴 𝐴𝐴 ) )
7 6 exlimiv ( ∃ 𝑥 𝑥𝐴 → ( Tr 𝐴 𝐴𝐴 ) )
8 1 7 sylbi ( 𝐴 ≠ ∅ → ( Tr 𝐴 𝐴𝐴 ) )
9 8 impcom ( ( Tr 𝐴𝐴 ≠ ∅ ) → 𝐴𝐴 )