Metamath Proof Explorer


Theorem triun

Description: An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion triun ( ∀ 𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
2 r19.29 ( ( ∀ 𝑥𝐴 Tr 𝐵 ∧ ∃ 𝑥𝐴 𝑦𝐵 ) → ∃ 𝑥𝐴 ( Tr 𝐵𝑦𝐵 ) )
3 nfcv 𝑥 𝑦
4 nfiu1 𝑥 𝑥𝐴 𝐵
5 3 4 nfss 𝑥 𝑦 𝑥𝐴 𝐵
6 trss ( Tr 𝐵 → ( 𝑦𝐵𝑦𝐵 ) )
7 6 imp ( ( Tr 𝐵𝑦𝐵 ) → 𝑦𝐵 )
8 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
9 sstr2 ( 𝑦𝐵 → ( 𝐵 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵 ) )
10 7 8 9 syl2imc ( 𝑥𝐴 → ( ( Tr 𝐵𝑦𝐵 ) → 𝑦 𝑥𝐴 𝐵 ) )
11 5 10 rexlimi ( ∃ 𝑥𝐴 ( Tr 𝐵𝑦𝐵 ) → 𝑦 𝑥𝐴 𝐵 )
12 2 11 syl ( ( ∀ 𝑥𝐴 Tr 𝐵 ∧ ∃ 𝑥𝐴 𝑦𝐵 ) → 𝑦 𝑥𝐴 𝐵 )
13 1 12 sylan2b ( ( ∀ 𝑥𝐴 Tr 𝐵𝑦 𝑥𝐴 𝐵 ) → 𝑦 𝑥𝐴 𝐵 )
14 13 ralrimiva ( ∀ 𝑥𝐴 Tr 𝐵 → ∀ 𝑦 𝑥𝐴 𝐵 𝑦 𝑥𝐴 𝐵 )
15 dftr3 ( Tr 𝑥𝐴 𝐵 ↔ ∀ 𝑦 𝑥𝐴 𝐵 𝑦 𝑥𝐴 𝐵 )
16 14 15 sylibr ( ∀ 𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵 )