Step |
Hyp |
Ref |
Expression |
1 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
2 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
4 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
5 |
3 4
|
nfss |
⊢ Ⅎ 𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
6 |
|
trss |
⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵 ) ) |
7 |
6
|
imp |
⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
8 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
|
sstr2 |
⊢ ( 𝑦 ⊆ 𝐵 → ( 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
10 |
7 8 9
|
syl2imc |
⊢ ( 𝑥 ∈ 𝐴 → ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
11 |
5 10
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
12 |
2 11
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
13 |
1 12
|
sylan2b |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
14 |
13
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
15 |
|
dftr3 |
⊢ ( Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
16 |
14 15
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵 ) |