| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trivsubgsnd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | trivsubgsnd.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | trivsubgsnd.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | trivsubgsnd.4 | ⊢ ( 𝜑  →  𝐵  =  {  0  } ) | 
						
							| 5 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝐵  =  {  0  } ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 8 | 1 2 5 6 7 | trivsubgd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  =  𝐵 ) | 
						
							| 9 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐵 }  ↔  𝑥  =  𝐵 ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  ∈  { 𝐵 } ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ∈  { 𝐵 } ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( 𝜑  →  ( SubGrp ‘ 𝐺 )  ⊆  { 𝐵 } ) | 
						
							| 13 | 1 | subgid | ⊢ ( 𝐺  ∈  Grp  →  𝐵  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 15 | 14 | snssd | ⊢ ( 𝜑  →  { 𝐵 }  ⊆  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 16 | 12 15 | eqssd | ⊢ ( 𝜑  →  ( SubGrp ‘ 𝐺 )  =  { 𝐵 } ) |