Metamath Proof Explorer


Theorem trkgbas

Description: The base set of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ }
Assertion trkgbas ( 𝑈𝑉𝑈 = ( Base ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 trkgstr.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ }
2 1 trkgstr 𝑊 Struct ⟨ 1 , 1 6 ⟩
3 baseid Base = Slot ( Base ‘ ndx )
4 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ }
5 4 1 sseqtrri { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ } ⊆ 𝑊
6 2 3 5 strfv ( 𝑈𝑉𝑈 = ( Base ‘ 𝑊 ) )