Description: The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trkgstr.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 , 〈 ( Itv ‘ ndx ) , 𝐼 〉 } | |
Assertion | trkgdist | ⊢ ( 𝐷 ∈ 𝑉 → 𝐷 = ( dist ‘ 𝑊 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trkgstr.w | ⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 , 〈 ( Itv ‘ ndx ) , 𝐼 〉 } | |
2 | 1 | trkgstr | ⊢ 𝑊 Struct 〈 1 , ; 1 6 〉 |
3 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
4 | snsstp2 | ⊢ { 〈 ( dist ‘ ndx ) , 𝐷 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 , 〈 ( Itv ‘ ndx ) , 𝐼 〉 } | |
5 | 4 1 | sseqtrri | ⊢ { 〈 ( dist ‘ ndx ) , 𝐷 〉 } ⊆ 𝑊 |
6 | 2 3 5 | strfv | ⊢ ( 𝐷 ∈ 𝑉 → 𝐷 = ( dist ‘ 𝑊 ) ) |