Metamath Proof Explorer


Theorem trkgstr

Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ }
Assertion trkgstr 𝑊 Struct ⟨ 1 , 1 6 ⟩

Proof

Step Hyp Ref Expression
1 trkgstr.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ }
2 1nn 1 ∈ ℕ
3 basendx ( Base ‘ ndx ) = 1
4 2nn0 2 ∈ ℕ0
5 1nn0 1 ∈ ℕ0
6 1lt10 1 < 1 0
7 2 4 5 6 declti 1 < 1 2
8 2nn 2 ∈ ℕ
9 5 8 decnncl 1 2 ∈ ℕ
10 dsndx ( dist ‘ ndx ) = 1 2
11 6nn 6 ∈ ℕ
12 2lt6 2 < 6
13 5 4 11 12 declt 1 2 < 1 6
14 5 11 decnncl 1 6 ∈ ℕ
15 itvndx ( Itv ‘ ndx ) = 1 6
16 2 3 7 9 10 13 14 15 strle3 { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ , ⟨ ( Itv ‘ ndx ) , 𝐼 ⟩ } Struct ⟨ 1 , 1 6 ⟩
17 1 16 eqbrtri 𝑊 Struct ⟨ 1 , 1 6 ⟩