Metamath Proof Explorer


Theorem trlatn0

Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trl0a.z 0 = ( 0. ‘ 𝐾 )
trl0a.a 𝐴 = ( Atoms ‘ 𝐾 )
trl0a.h 𝐻 = ( LHyp ‘ 𝐾 )
trl0a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trl0a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlatn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴 ↔ ( 𝑅𝐹 ) ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 trl0a.z 0 = ( 0. ‘ 𝐾 )
2 trl0a.a 𝐴 = ( Atoms ‘ 𝐾 )
3 trl0a.h 𝐻 = ( LHyp ‘ 𝐾 )
4 trl0a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 trl0a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
7 6 ad3antrrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑅𝐹 ) ∈ 𝐴 ) → 𝐾 ∈ AtLat )
8 1 2 atn0 ( ( 𝐾 ∈ AtLat ∧ ( 𝑅𝐹 ) ∈ 𝐴 ) → ( 𝑅𝐹 ) ≠ 0 )
9 7 8 sylancom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑅𝐹 ) ∈ 𝐴 ) → ( 𝑅𝐹 ) ≠ 0 )
10 9 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴 → ( 𝑅𝐹 ) ≠ 0 ) )
11 1 2 3 4 5 trlator0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴 ∨ ( 𝑅𝐹 ) = 0 ) )
12 11 ord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ¬ ( 𝑅𝐹 ) ∈ 𝐴 → ( 𝑅𝐹 ) = 0 ) )
13 12 necon1ad ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ≠ 0 → ( 𝑅𝐹 ) ∈ 𝐴 ) )
14 10 13 impbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴 ↔ ( 𝑅𝐹 ) ≠ 0 ) )