Step |
Hyp |
Ref |
Expression |
1 |
|
trl0a.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
2 |
|
trl0a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
trl0a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trl0a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
trl0a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
7 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
8 |
1 2
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) → ( 𝑅 ‘ 𝐹 ) ≠ 0 ) |
9 |
7 8
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) → ( 𝑅 ‘ 𝐹 ) ≠ 0 ) |
10 |
9
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) ≠ 0 ) ) |
11 |
1 2 3 4 5
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐹 ) = 0 ) ) |
12 |
11
|
ord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ¬ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) = 0 ) ) |
13 |
12
|
necon1ad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ≠ 0 → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
14 |
10 13
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ↔ ( 𝑅 ‘ 𝐹 ) ≠ 0 ) ) |